Isolation and Characterization of Novel Capsorubin-Like Carotenoids from the Red Mamey (*Pouteria sapota*)

by Enrique Murillo^a), Yesury Mosquera^a), Tibor Kurtán^b), Gergely Gulyás-Fekete^c), Veronika Nagy^c), and József Deli^{*c})

^a) Department of Biochemistry, Faculty of Exact Natural Sciences and Technology, University of Panama, Panama

^b) University of Debrecen, Faculty of Sciences, Department of Organic Chemistry, Egyetem tér 1, H-4032, Debrecen

^c) University of Pécs, Medical School, Department of Biochemistry and Medical Chemistry, Szigeti út 12, H-7624, Pécs (phone: +36-72-536356; fax: +36-72-536225; e-mail:jozsef.deli@aok.pte.hu)

From the ripe fruits of red mamey (*Pouteria sapota*), two new carotenoids, 3'-deoxycapsorubin and 3,3'-dideoxycapsorubin, were isolated and identified based on their UV/VIS, CD, ¹H-NMR, and mass spectral data.

Introduction. – The most common carotenoids have six-membered rings as endgroups (β or ε rings), while carotenoids with a five-membered ring (κ -ring) are rare. Well-known carotenoids containing a κ end-group, such as capsanthin, capsorubin, and cryptocapsin, are characteristic components of red paprika (*Capsicum annuum*) [1][2]. The κ end-group of these carotenoids always bears a OH group. We have recently reported the complete isolation and characterization of sapotexanthin (β , κ -caroten-6'one) containing a non-hydroxylated κ -end group, from red mamey (*Pouteria sapota*) pulp [3]. Besides, pulp of red mamey contains some other interesting red carotenoids with hydroxylated or non-hydroxylated κ -rings [4][5]. In this article, we present the isolation of two new diketo-di- κ -carotenoids structurally related to capsorubin.

Results and Discussion. – The acetone extract of ripe fruits of mamey (500 g) was saponified with 5% KOH/MeOH. The saponified residue was chromatographed on a column of aluminum oxide (*Brockmann III*) with an increasing percentage of Et₂O in hexane. By repeated column chromatography, compounds 1-3 (*Fig. 1*) were separated, subsequently crystallized, and identified based on the analysis of their UV/VIS, CD, ¹H-NMR, and mass spectra.

The UV/VIS spectra of the isolated compounds revealed maxima at 485 nm in EtOH (no *cis* peak), identical with the spectrum of capsorubin isolated from red paprika [1].

Reduction of compounds 1-3 with NaBH₄ gave mixtures of stereoisomeric alcohols with identical UV spectra. The UV spectra of these mixtures exhibited, as expected, an increased fine structure and a hypsochromic shift. The perfect super-imposability of the spectra of compounds 1-3 and of those of their reduction products suggests substantial structural similarity between these compounds (*Fig. 2*). The 45-nm

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of carotenoids with κ end-groups isolated from red mamey

hypsochromic shift in the absorption maxima and the increase of the molecular mass of 4 units after the reduction show that compounds 1-3 contain two CO groups that are conjugated with the polyene chain consisting of nine conjugated C=C bonds. Acetylation of 1 ($M_w = 600 \text{ g/mol}$) showed an increase of 84 mass units, which indicates that compound 1 contains two OH groups. Co-chromatography of 1 with capsorubin isolated from red paprika [1] in two different solvent systems by HPLC and TLC, as well as the results of the above described experiments, confirmed that compound 1 was capsorubin. The molecular weight of compound 2 was determined as 584 g/mol by MS ($C_{40}H_{56}O_3$). The reduction products of 2 showed a molecular weight of 586 g/mol ($C_{40}H_{58}O_3$), and the acetylation product of 2 had a molecular weight of 626 g/mol, which led to the conclusion that two conjugated C=O groups and only one OH group were present in the structure. Analogously, compound 3 was established not to contain a OH group, but the two keto groups conjugated to the polyene chain (*Table*).

The constitutions and configurations of the new compounds were established by NMR experiments. Because only very small amounts of samples were available, the ¹H-assignments were based on simple ¹H-, and in the case of **2**, also ¹H,¹H-COSY experiments, analyzed with standard *Varian* software. The positions of the OH group in compound **2** could be easily established from the presence of the characteristic ¹H chemical shifts (*e.g.*, H–C(3) (δ (H) 4.47–4.55); H_{ax}–C(2) (δ (H) 1.73); H_{eq}–C(2) (δ (H) 2.00); H_{ax}–C(4) (δ (H) 1.49); and H_{eq}–C(4) (δ (H) 2.95)) and coupling constants in comparison with the respective ¹H signals of the reference capsanthin 5,6-epoxide

Fig. 2. a) UV/VIS Spectra (in HPLC eluent) of 1-3 and b) UV/VIS spectra (in HPLC eluent) of reduction products of 1-3

 Table. UV/VIS, MS, HPLC, and TLC Data of 1-3 and Capsorubin (isolated from paprika) and Their Reduction and Acetylation Products

	Capsorubin	1	2	3
$\lambda_{\rm max}$ EtOH	485	485	485	486
$\lambda_{\max}(C_{30})$	482	482	481	480
$\lambda_{\max}(C_{18})$	477	477	477	476
λ_{\max} red. (C_{30})	437	437	437	438
$MS(M^+)$	600	600	584	568
MS (M^+ , reduced)	604	604	588	572
MS (M^+ , acetylated)	684	684	626	_
$t_{\rm R}$ (HPLC (C_{30})) ^a) [min]	14.67	14.67	20.13	26.81
$t_{\rm R}$ (HPLC (C_{18})) ^a) [min]	2.73	2.73	3.17	3.66
$R_{\rm f}$ (TLC) ^a)	0.08	0.08	0.31	0.89

^a) See in the *General* section in the *Exper. Part.*

[6]. The ¹H-NMR signals of CH₂ H-atoms in the non-hydroxylated κ -end group of **2** and **3**, except for H_{eq}-C(4') (δ (H) 2.47–2.56), were overlapped. Therefore, the H-atoms of CH₂(2') and CH₂(4') were identified on the basis of the similarity of the chemical shifts in compounds with non-hydroxylated κ end-groups, such as sapotex-

anthin [3] and 3'-deoxycapsanthin [7]. The other ¹H chemical shifts and the J(H,H) values corresponded well with literature values for the chemical shifts of substituted and unsubstituted κ end-groups [3][6][7].

Compounds **2** and **3** each exhibited a CD spectrum with a positive *Cotton* effect at *ca.* 290 nm and negative *Cotton* effects at *ca.* 250 and 365 nm (*Fig. 3*), in agreement with the data for natural capsorubin (**1**) [8], which has the (3S,5R) configuration in the κ -ring. Thus, the (3S,5R) absolute configuration was postulated for the hydroxylated κ end-group in **2**, and (5R) for the non-hydroxylated κ end-groups in both compounds **2** and **3**. Therefore, compound **2** was defined as (3S,5R,5'R)-3-hydroxy- κ,κ -carotene-6,6'-dione (= 3'-deoxycapsorubin), and compound **3** as (5R,5'R)- κ,κ -carotene-6,6'-dione (= 3,3'-dideoxycapsorubin).

Fig. 3. CD Spectra of 3'-deoxycapsorubin (2; —) and 3,3'-dideoxycapsorubin (3; ----) in hexane

Concerning the biosynthesis of carotenoids in paprika, capsanthin-capsorubin synthase (CCS), the enzyme catalyzing the conversion of 5,6-epoxy end groups into 6-oxo- κ end groups, was isolated from *C. annuum*. Thus, 3'-deoxycapsorubin (**2**) and 3,3'-dideoxycapsorubin (**3**) were assumed to be a product of the pinacollic rearrangement of β -cryptoxanthin-5,6,5',6'-diepoxide and β -carotene-5,6,5',6'-diepoxide, respectively, presumably catalyzed by CCS (*Scheme*). HPLC Analysis showed that significant amounts of the diepoxides of β -cryptoxanthin and β -carotene were present in the extract of mamey [4].

This study was supported by the grant OTKA K 83898 (*Hungarian Scientific Research Foundation*). We thank Dr. *L. Drahos* for performing the MS measurement, and Mr. *N. Götz* for his skillful assistance. We thank INDICASAT for the use of HPLC-MS and FAIHUP of Panama, and for financial support.

Experimental Part

General. HPLC: Hewlett-Packard chromatograph model 1050 equipped with diode array detector and HP ChemStation software; the molar masses were obtained by HPLC APCI-MS in an Agilent 1100 HPLC chromatograph coupled to a JEOL MS LCmate mass spectrometer. HPLC Conditions for C_{30} column: 250×4.6 mm i.d.; YMC C_{30} , 5 µm, linear gradient from methyl tert-butyl ether (MTBE)/H₂O/ MeOH 15:4:81 to MTBE/H₂O/MeOH 90:4:6 during 90 min. C_{18} column: Spherisorb ODS2 HP (250 × 4.6 mm i.d. 5 µm), isocratic elution, MeCN/CH₂Cl₂/MeOH 82:13:5; flow rate, 1.00 ml/min. TLC: silica plate (Merck), eluent Et₂O/hexane 1:1. UV Spectra: Jasco V-530 spectrophotometer, in benzene or EtOH; λ in nm. CD Spectra: J-810 spectropolarimeter. ¹H-NMR Spectra: Varian UNITY INOVA 400-WB (400 MHz) spectrometer in CDCl₃ with TMS as an internal standard. HR-ESI-TOF-MS: Waters Q-TOF Premier mass spectrometer (Waters Corporation, Milford, MA, USA); the sample was dissolved in MeOH and measured in positive-ion electrospray ionization mode.

Plant Material. Matured fruits were purchased at the Metropolitan public market in Panama City, Panama.

Extraction and Isolation. The pulp of red mamey (500 g) was homogenized in a porcelain mortar with 50 g of NaHCO₃ and extracted with acetone until no more color was observed. The extract was diluted with a mixture of Et_2O /hexane 1:1, washed with H_2O to remove acetone, dried (Na₂SO₄), and evaporated. The residue was dissolved in Et_2O and saponified with methanolic KOH. After saponification, the Et_2O soln. was washed to alkali-free, and then evaporated. The residue was subjected to open CC (Al₂O₃, *Brokman grade III*) using an increasing percentage of Et_2O in hexane. Capsorubin (1) was isolated in pure form after additional CC of *Fr. 11* (eluted with 100% Et_2O), 3'-deoxycapsorubin (2) from *Fr. 8* (eluted with 65% Et_2O), and 3,3'-dideoxycapsorubin (3) from *Fr. 1* (eluted with 4% Et_2O). The purity of the compounds was verified by HPLC-DAD and HPLC/MS.

3'-Deoxycapsorubin (=(3S,5R,5'R)-3-Hydroxy-к,к-carotene-6,6'-dione; **2**). Red crystals. UV (EtOH): 485. CD (hexane): 429 (-0.55), 362 (-2.70), 327sh (-1.08), 294 (4.13), 280sh (1.98), 243 (-2.51). ¹H-NMR (400 MHz, CDCl₃): 0.84 (*s*, Me(16)); 0.85 (*s*, Me(16')); 1.11 (*s*, Me(17')); 1.18 (*s*, Me(18')); 1.21 (*s*, Me(17)); 1.37 (*s*, Me(18)); 1.49 (*dd*, $J_{gem} = 14.5, J(4_{ax},3) = 3.1, H_{ax}$ -C(4)); 1.48-1.55 (*m*, H_{ax}-C(4')); 1.55-1.59 (*m*, H_{eq}-C(2')); 1.66-1.71 (*m*, H_{ax}-C(2'), CH₂(3')); 1.73 (*dd*, $J_{gem} = 13.7, J(2_{ax},3) = 3.1, J_{ax} = 3.1, J_{ax$

3.2, H_{ax} -C(2)); 1.97 (*s*, Me(19), Me(19')); 1.98 (*s*, Me(20)); 1.99 (*s*, Me(20')); 2.00 (*dd*, J_{gem} =13.7, $J(2'_{eq},3) = 7.8$, H_{eq} -C(2)); 2.47-2.56 (*m*, H_{eq} -C(4')); 2.95 (*dd*, J_{gem} =14.5, $J(4'_{eq},3) = 8.7$, H_{eq} -C(4)); 4.47-4.55 (*m*, H-C(3)); 6.32-6.37 (*m*, H-C(14), H-C(14')); 6.44 (*d*, J(7,8) = 15.1, H-C(7)); 6.48 (*d*, J(7',8') = 15.0, H-C(7')); 6.51 (*dd*, J(12,11) = 14.6, H-C(12)); 6.52 (*d*, J(12',11') = 13.2, H-C(12')); 6.56 (*d*, J(10,11) = 11.4, H-C(10)); 6.57 (*d*, J(10',11') = 9.7, H-C(10')); 6.59-6.64 (*m*, H-C(11)); 6.63 (*dd*, J(11',10') = 9.7, J(11',12') = 13.2, H-C(11')); 6.66-6.72 (*m*, H-C(15), H-C(15')); 7.32 (*d*, J(8,7) = 15.1, J(8',7') = 15.0, H-C(8), H-C(8')). HR-ESI-TOF-MS: 585.4308 ($[M + H]^+$, $C_{40}H_{57}O_3^+$; calc. 585.4308).

3,3'-Dideoxycapsorubin (=(5R,5'R)-к,к-Carotene-6,6'-dione; **3**). Red crystals. UV (EtOH): 485. CD (hexane): 416 (-0.19), 363 (-2.37), 337sh (-1.33), 293 (4.10), 282sh (2.29), 243 (-1.56). ¹H-NMR (400 MHz, CDCl₃): 0.85 (*s*, Me(16), Me(16')); 1.11 (*s*, Me(17), Me(17')); 1.18 (*s*, Me(18), Me(18')); 1.66–1.72 (*m*, H_{ax}-C(2), H_{ax}-C(2'), CH₂(3), CH₂(3')); 1.99 (*s*, Me(19), Me(19')); 2.01 (*s*, Me(20), Me(20')); 2.46–2.55 (*m*, H_{eq}-C(4')); 6.33–6.36 (*m*, H–C(14), H–C(14')); 6.49 (*d*, *J*(7,8) = *J*(7',8') = 15.1, H–C(7), H–C(7')); 6.51 (*d*, *J*(12,11) = *J*(12',11') = 14.6, H–C(12), H–C(12')); 6.55 (*d*, *J*(10,11) = *J*(10',11') = 11.1, H–C(10), H–C(10')); 6.64 (*dd*, *J*(11,10) = *J*(11',10') = 11.1, *J*(11,12) = *J*(11',12') = 14.6, H–C(11), H–C(11')); 6.67–6.71 (*m* H–C(15), H–C(15')); 7.32 (*d*, *J*(8,7) = *J*(8',7') = 15.1, H–C(8')). HPLC-MS: 586 (*M*⁺).

Capsorubin (=(3\$,3'\$,5\$,5\$,5'R)-3,3'-*Dihydroxy-к*, κ -*carotene-6,6'-dione*; **1**). UV (EtOH): 485 nm. CD (dioxane): see [8]. HPLC-MS: 600 (M^+).

REFERENCES

- [1] J. Deli, P. Molnár, Curr. Org. Chem. 2002, 6, 1197.
- [2] J. Deli, G. Tóth, Z. Lebensm.-Unters.-Forsch. A 1997, 205, 388.
- [3] E. Murillo, R. McLean, G. Britton, A. Agócs, V. Nagy, J. Deli, J. Nat. Prod. 2011, 74, 283.
- [4] J. Deli, E. Turcsi, I. Szabó, Y. Mosquera, E. Murillo, Acta Biologica Cracoviensia 2011, 53 (Suppl. 1), 55.
- [5] G. Gulyás-Fekete, E. Murillo, T. Kurtán, T. Papp, T.-Z. Illyés, L. Drahos, A. Agócs, J. Deli, Acta Biologica Cracoviensia 2011, 53 (Suppl. 1), 56.
- [6] J. Deli, P. Molnár, Z. Matus, G. Tóth, A. Steck, H. Pfander, Helv. Chim. Acta 1998, 81, 1242.
- [7] T. Maoka, N. Akimoto, Y. Fujiwara, K. Hashimoto, J. Nat. Prod. 2004, 67, 115.
- [8] R. Buchecker, K. Noack, in 'Carotenoids, Vol. 1B. Spectroscopy', Eds. G. Britton, S. Liaaen-Jensen, H. Pfander, Birkhäuser, Basel, 1995, pp. 63-116.

Received December 7, 2011